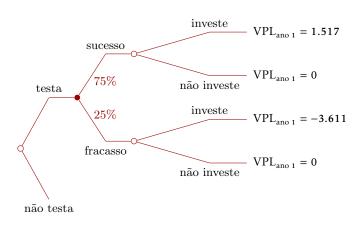
### Estratégia e análise no uso do VPL

Roberto Guena de Oliveira


## Potenciais fontes de VPL positivo (entre tantas)

- Inovação no produto.
- 2 Criação de novos produtos.
- Inovação na tecnologia de produção.
- 4 Inovação organizacional.

## Árvores de decisão — Exemplo

Uma empresa gostaria de saber se lançar o novo produto que ela desenvolveu é viável. Para tal, precisa fabricar alguns protótipos e fazer teste de mercado para esse produto. Há um custo de R\$100 milhões nesse processo. Após esse teste, a empresa poderá investir R\$1.500 milhões. Se o teste for bem sucedido, esse investimento resultará em um VPL (na data de realização do investimento) de R\$1.517. Se o teste fracassar, o investimento resultará em um VPL (na mesma data) de -R\$3.611. A probabilidade de que o teste seja bem sucedido é de 75%. A taxa de desconto é de 15%.

## Árvore de decisão — Exemplo



| agora                                 | 1 ano                                | 2 anos   |
|---------------------------------------|--------------------------------------|----------|
| Teste e<br>desenvolvimento<br>-R\$100 | Investimento<br>inicial<br>-R\$1.500 | Produção |

## Árvore de decisão — Exemplo

#### VPL esperado do fluxo de caixa a partir do ano 1

Se o teste tiver sucesso (probabilidade de 75%), a empresa deverá realizar o investimento; se ele fracassar (probabilidade de 25%), a empresa não deve investir. Assim, o valor presente esperado do fluxo de caixa a partir do primeiro ano é

$$1.517 \times 75\% - 0 \times 25\% = 1138.$$

## Árvore de decisão — Exemplo

#### VPL esperado do fluxo de caixa a partir do ano 1

Se o teste tiver sucesso (probabilidade de 75%), a empresa deverá realizar o investimento; se ele fracassar (probabilidade de 25%), a empresa não deve investir. Assim, o valor presente esperado do fluxo de caixa a partir do primeiro ano é

$$1.517 \times 75\% - 0 \times 25\% = 1138.$$

#### VPL esperado do fluxo de caixa a partir do ano 0

$$VPL = -100 + \frac{1.138}{1,15} = 890.$$

Portanto, a empresa deve realizar o teste.

# Exemplo de variáveis consideradas para a projeção de fluxo de caixa

| Variável                                 | Projeção   |          |          |
|------------------------------------------|------------|----------|----------|
| , all all all all all all all all all al | Pessimista | Esperada | Otimista |
| Tamanho de mercado (un./ano)             | 5.000      | 10.000   | 20.000   |
| Participação no mercado (%)              | 20         | 30       | 50       |
| Preço (R\$milhões)                       | 1,9        | 2        | $^{2,2}$ |
| Custo variável (R\$milhões/unidade)      | 1,2        | 1        | 0,8      |
| Custo fixo (R\$milhões/ano)              | 1.891      | 1.791    | 1.741    |
| Investimento                             | 1.900      | 1.500    | 1000     |

Custo variável = Curso variável por unidade × unidades vendidas

Custo variável = Curso variável por unidade × unidades vendidas Vendas = Participação no mercado × Tamanho do mercado

Custo variável = Curso variável por unidade × unidades vendidas

**Vendas** = Participação no mercado × Tamanho do mercado

 $Receitas = Vendas \times Preço$ 

Custo variável = Curso variável por unidade × unidades vendidas

Vendas = Participação no mercado × Tamanho do mercado

 $Receitas = Vendas \times Preço$ 

**Depreciação** = Investimento ÷ 5

Custo variável = Curso variável por unidade × unidades vendidas

Vendas = Participação no mercado × Tamanho do mercado

 $Receitas = Vendas \times Preço$ 

Depreciação = Investimento ÷ 5

Lucro antes dos impostos

= Receitas – Custo variável – Custo fixo – Depreciação

# Exemplo de projeções de fluxos de caixa projeções esperadas

| Item                            | Ano 1  | Ano 2 |
|---------------------------------|--------|-------|
| Receitas                        |        | 6.000 |
| – Custos variáveis              |        | 3.000 |
| <ul><li>Custos fixos</li></ul>  |        | 1.791 |
| <ul> <li>Depreciação</li> </ul> |        | 300   |
| Lucro antes do imposto          |        | 909   |
| – Imposto (34%)                 |        | 309   |
| Lucro líquido                   |        | 600   |
| + Depreciação                   |        | 300   |
| - Investimento                  | 1.500  |       |
| Fluxo de caixa                  | -1.500 | 900   |
| VPL (ano 1, tx. desc. 15%)      | 1.517  |       |

4D + 4B + 4B + B + 990

# Análise de sensibilidade: efeito sobre o VPL quando se assume projeção diferente para uma variável

| Variável                   | Projeção   |          |          |
|----------------------------|------------|----------|----------|
| , with of                  | Pessimista | Esperada | Otimista |
| Tamanho de mercado         | -1.802     | 1.517    | 8.154    |
| Participação no mercado    | -696       | 1.517    | 5.942    |
| Preço                      | 853        | 1.517    | 2.844    |
| Custo variável por unidade | 189        | 1.517    | 2.844    |
| Custo fixo                 | 1.295      | 1.517    | 1.627    |
| Investimento               | 1.208      | 1.517    | 1.903    |

#### Análise de cenário

Na análise de cenário, são consideradas combinações alternativas de possíveis valores assumidos pelas variáveis consideradas.

#### Exemplo

Projeções: Cenário 1: participação no mercado: otimista; preço:

pessimista; investimento: pessimista; demais

variáveis: esperada.

Cenário 2: tamanho no mercado: pessimista;

participação no mercado: esperada; demais

variáveis: otimista.

**VPL's:** Cenário 1: 4.527

Cenário 2: 22

### Experimentos de Monte Carlo

Os valores de cada variável são sorteados inúmeras vezes a partir de uma distribuição conjunta de probabilidades, para obter-se uma estimativa da distribuição de probabilidade do VPL.

#### Análise de Break-Even: Break-Even contábil

#### Sejam

- L o lucro após imposto;
- p o preço do produto;
- q a quantidade vendida;
- CVM o custo variável médio que se supõe constante;
  - *CF* os custo fixo;
    - D a depreciação; e
    - T a alíquota dos tributos incidentes sobre o lucro. Então,

#### Análise de Break-Even: Break-Even contábil

#### Sejam

- L o lucro após imposto;
- p o preço do produto;
- q a quantidade vendida;
- CVM o custo variável médio que se supõe constante;
  - CF os custo fixo;
    - D a depreciação; e
    - T a alíquota dos tributos incidentes sobre o lucro. Então,

$$L = (pq - CVMq - CF - D)(1 - T),$$

e a condição para que o lucro seja não negativo é

#### Análise de Break-Even: Break-Even contábil

#### Sejam

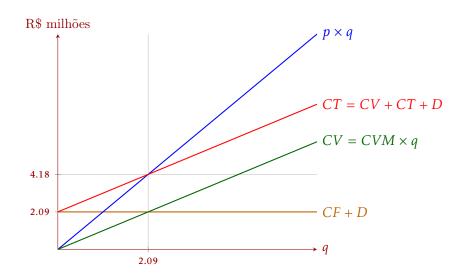
- L o lucro após imposto;
- p o preço do produto;
- q a quantidade vendida;
- CVM o custo variável médio que se supõe constante;
  - CF os custo fixo;
    - D a depreciação; e
    - T a alíquota dos tributos incidentes sobre o lucro. Então,

$$L = (pq - CVMq - CF - D)(1 - T),$$

e a condição para que o lucro seja não negativo é

$$q \geq \frac{CF + D}{p - CVM}$$




- p = 2
- CVM = 1
- CF = 1.791
- D = 300
- T = 34%

- p = 2
- CVM = 1
- CF = 1.791
- D = 300
- T = 34%

Quantidade de break-even contábil:

$$q = \frac{1.791 + 300}{2 - 1} = 2.091.$$

## Representação gráfica



#### Break-Even financeiro

O fluxo de caixa em cada período t é

$$FC_t = (p_t q_t - CVM_t q_t - CF_t)(1 - T) + D_t T - I_t.$$

Assumindo que o projeto dure n anos, tenha um único investimento em t=0, dada na qual não há outros fluxos de caixa, e que as demais variáveis mantenham seus valores inalterardos em  $t=1,2,\ldots,n$ , então o valor presente do fluxo de caixa será dado por

$$VPL = -I + \left[\frac{1}{r} - \frac{1}{r(1+r)^n}\right] [(pq - CVMq - CF)(1-T) + DT]$$

A condição para que ele seja não negativo é, portanto,

$$-I + \left[\frac{1}{r} - \frac{1}{r(1+r)^n}\right] [(pq - CVMq - CF)(1-T) + DT] \ge 0$$

## Break-Even financeiro — continuação

Essa condição pode ser traduzida em termos de equivalentes anuais, da seguinte forma

$$-CEA + (pq - CVMq - CF)(1 - T) + DT \ge 0$$

em que

$$CEA = I\left[\frac{1}{r} - \frac{1}{r(1+r)^n}\right]^{-1}$$

é o custo anual de n anos equivalente ao investimento.

## Break-Even financeiro — continuação

Essa condição pode ser traduzida em termos de equivalentes anuais, da seguinte forma

$$-CEA + (pq - CVMq - CF)(1 - T) + DT \ge 0$$

em que

$$CEA = I \left[ \frac{1}{r} - \frac{1}{r(1+r)^n} \right]^{-1}$$

 $\acute{e}$  o custo anual de n anos equivalente ao investimento.

Resolvendo para q obtemos:

$$q \ge \frac{CEA + CF(1-T) - D \times T}{(p - CVM)(1-T)}.$$

- p = 2
- $\bullet$  CVM = 1
- CF = 1.791
- I = 1.500

- p = 2
- CVM = 1
- CF = 1.791
- I = 1.500

- n = 5
- D = 300
- T = 34%
- r = 15%

- p = 2
- CVM = 1
- CF = 1.791
- I = 1.500

- n = 5
- D = 300
- T = 34%
- r = 15%

• 
$$p = 2$$

$$CVM = 1$$

• 
$$CF = 1.791$$

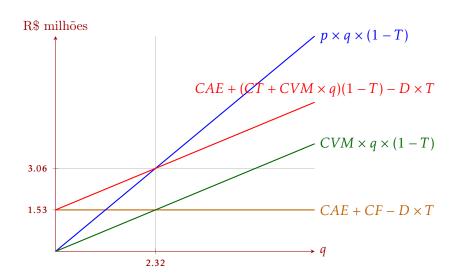
• 
$$I = 1.500$$

• 
$$n = 5$$

• 
$$D = 300$$

• 
$$T = 34\%$$

• 
$$r = 15\%$$


Custo anual equivalente do investimento:

$$CAE = 452,47.$$

Quantidade de break-even financeiro:

$$q = \frac{452,47 + 1791 \times 0,66 - 300 \times 0,34}{(2-1) \times 0,66} = 2315.$$

## Representação gráfica



## Opções

A análise de um projeto deve considerar as opções de escolha da firma que optar por esse projeto ao longo do tempo. Entre as principais opções, podemos citar:

- Opção de expandir: caso o projeto se mostre um sucesso, a empresa pode ampliar esse sucesso expandindo-o.
- Opção de abandono: por vezes, é possível abandonar o projeto, revertento parte de seu custo e abandonando prejuízos futoros.

O valor de mercado de um projeto, M, é a soma do valor presente líquido do projeto sem as opções  $\mathit{VPL}$  mais o valor das opções gerenciais  $\mathit{Opt}$ :

$$M = VPL + Opt$$

- Há dois meios de se produzir o mesmo produto. O método A usa uma máquina convencional que tem um mercado secundário ativo.
   O método B usa um equipamento que não tem valor de revenda, mas é mais eficiente.
- Se a produção ocorrer até a data de reposição dos equipamentos A e B, o método B gera um maior VPL.
- Porém, caso haja o risco da produção encerrar-se antes dessa data, o método A pode ser mais vantajoso, pois oferece, a cada instante do tempo a opção de ecerrar a produção e revender o equipamento.

**Vendas:** 0 unidades ao ano com probabilidade de 50% ou 20 unidades ao ano com probabilidade de 50% — valor a ser revelado ao início do primeiro ano.

Vendas esperadas: 10 unidades por ano perpetuamente.

Fluxo de caixa esperado por unidade: R\$10 por unidade ano.

Fluxo de caixa esperado: R\$100 ao final de cada ano.

Investimento em  $t_0$ : R\$1.050.

Valor de mercado do equipamento usado: R\$500.

Taxa de desconto: %10

#### Análise de fluxo de caixa convencional

$$VPL_c = \frac{100}{0.1} - 1.050 = -50.$$

# Análise considerando-se uma opção de encerramento no início do primeiro ano

Se, no prazo de um ano, detectar-se que os fluxos de caixa serão R\$0, a empresa deve abandonar o projeto e vender o equipamente. Nesse caso, o VPL do projeto (na data zero) será

$$VPL_0 = -1.050 + \frac{500}{1,1} = -595,45$$

# Análise considerando-se uma opção de encerramento no início do primeiro ano

Se, no prazo de um ano, detectar-se que os fluxos de caixa serão R\$0, a empresa deve abandonar o projeto e vender o equipamente. Nesse caso, o VPL do projeto (na data zero) será

$$VPL_0 = -1.050 + \frac{500}{1,1} = -595,45$$

Se o fluxo de caixa observado for de R\$200, a empresa deve manter o projeto cujo valor presente na data zero será

$$VPL_1 = -1.050 + \frac{200}{0.1} = 950$$

# Análise considerando-se uma opção de encerramento no início do primeiro ano

Se, no prazo de um ano, detectar-se que os fluxos de caixa serão R\$0, a empresa deve abandonar o projeto e vender o equipamente. Nesse caso, o VPL do projeto (na data zero) será

$$VPL_0 = -1.050 + \frac{500}{1,1} = -595,45$$

Se o fluxo de caixa observado for de R\$200, a empresa deve manter o projeto cujo valor presente na data zero será

$$VPL_1 = -1.050 + \frac{200}{0.1} = 950$$

Assim, o *VPL* esperado do projeto quando se considera a opção de encerramento será

$$VPL_e = \frac{950 - 595,45}{2} = 177,27.$$

Portanto, o projeto deve ser executado.

### Valor da opção de encerramento:

$$VP_o = 50\% \times \frac{500}{1,1} = 227,27.$$

### Valor da opção de encerramento:

$$VP_o = 50\% \times \frac{500}{1,1} = 227,27.$$

Observe que

$$VPL_e = VPL_c + VP_o = -50 + 227,27.$$